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In the dynamics of viscous incompressible fluids one is familiar with the
Karman problem of an infinite disc rotating at constant angular velocity
and generating laminar motion in the fluid medium which is immediately
adjacent to it. The solution to this problem is one of the examples of
exact solutions to the Navier-Stokes equation [ 1 ]. The heat transfer
problem of the fluid under constant temperature conditions of the disc
surface was solved (also exactly) by Millsaps and Pohlhausen [2 ].

In this article we show how, by solving the appropriate gasdynamic
problem, with certain conditions and simplifications, we can find a solu-
tion of both these problems.

1. Formulation of the problem. We imagine an infinite plane
disc rotating uniformly about an axis perpendicular to its plane in a
space filled with viscous gas. Let the rotational axis be z, and the disc
plane coincide with that of z = 0. Using cylindrical coordinates (r, 6,z )
we can write down the basic equations which define motion and heat trans-
fer in a viscous flow of gas (see, for instance, [3]). We will assume
that the following conditions apply: the gas is a perfect one; the flow
is steady; the flow parameters are independent of the angular coordinate
0; there are no body forces; there is no mass heat flux from outside; the
so-called "second viscosity coefficient* differs from the basic ome only
in respect of a constant multiplier, g, = ap, |a| = 0(1). The boundary
conditions for temperature and velocity vector components in the disc
problem will be as follows:

r(,0 0=rT, u. (r, 0, 0)=0, uz(r, 9, 0)=ro,

T(r,0,00)=T_, u,(r, 9, 00) =0, ug (7,0, 00) =0, u,(r, 0,0)=0 (1.1)

2. Transformation to dimensionless variables and simplifi-
catien of the equation. We introduce two additional assumptions,
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namely, we assume the Prandtl number o = pc, /A to be constant and we
also assume the following law relating viscosity with temperature:

Bl =(T T

Furthermore, we select the scales of our required variables to be
quantities whose order of magnitude corresponds to the maximum values of
the variables themselves; the scale for axial velocity is chosen by
analogy with the solution for the incompressible fluid. Independent vari-
ables are also rendered non-dimensional while the scale in the axial
direction is of the order or thickness of the hydrodynamic viscous layer
in an incompressible fluid. As regards the radial length scale the choice
is based on the condition of maintaining a minimum number of dimension-
less parameters in the equations.

The dimensionless variables are introduced using these formulas

,.' ,=|/ :';, u, =arF, uy = rG, u,=y‘,—“;1v (2.1)
P""V‘coQ ’ T =TgQ, = PooD» P=Poo°pTooP

Here F, G, N. Q, D, P, are, in general, functions of r and z. Our
equations in dimensionless form will be as follows (bars above r and z

have been dropped):

Equation of continuity

1 2(*DF) , (DN) _

T T or F23 (2.2)

Equations of motion in components in three directions

D[F 9(rF) +1v——c=] =

_____,_1";1: oo 3x {Q,.[ 3(rF) : a(;'rF) _ giv]}+
(s -;Tr DR N
D[ a(rG) +N-———+FG] (Q.. gf)+_K_ 2 {Q,.[a(ra) G]}+
+ 2o [249 ] (2.4)
%D(ﬂ%w-"-’l)h =rralelas "5

+__r_l {Qﬂ [3(rF) +It aN} @2.5)

Energy equation
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o(#32n)-(or Z4n )= b (D) ()
e (IR e ) () (2 1 8+
I L S I

Equation of state

@0

In Equations (2.3)-(2.6) there is a dimensionless parameter K, defined
by the equation
K = ¢, T v, t0™? 2.8)
This quantity is the basic parameter of similarity for the given
problem and can be regarded as a combination based on the circumferential
velocity of the disc, the Mach number and Reynolds number

K= T—i‘lT (M ()
A very wide class of flows exists which corresponds to the condition
K>» 1.

Equations obtained from Equations (2.2)-(2.7) in the limiting case
with K » o, will be called boundary layer equations on a rotating disc.
In particular, from Equation {2.5) and from the condition of constant
pressure at infinity, it follows that over the whole flow

P = const = 5—;—'1 2.9)

The boundary conditions (1.1) in dimensionless form are as follows:

Q(r' 0)=Q\w F(l‘, 0):(}: G(P, 0)=1'

Q(r,o0) =1, F(r,o0)=0, G{r,00)=0, N(r,0)=0 (2.10)

3. Construction of an exact selution for the boundary layer.
To construct a solution to the system of Equations (2.2)-(2.7) for K » =
we will carry out a transformation similar to Dorodnitsyn’s for a two-
dimensional boundary layer in a gas [4]. In fact, instead of r and z we
introduce new independent variables

z
a=r,  t=\Da 3.4
0
We also introduce a new unknown quantity H, to replace the function N

H=ND4nF 3t @3.2)
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while the index n in the viscosity temperature relation will be assumed
to be unity; Equations (2.2)-(2.4) and (2.6) are brought to the form

1 3 (w*F) 3 (nF) oF »F 3 (16) ac
W o +ac"° P tH g —C=% T +H G +FG =
P20, 530 LB L8y (56

+H 5= <@ T [( ac) + ac)] (3.3)

Boundary conditions (2.10) are now replaced by the following condi-
tions:
QM 0)=Q, F(m 0=0, G 0)=1,
Q (0, 00) =1, Fmo)=0, G@mo)=0, H0=0 (3.4)

Function D does not enter the system of equations (3.3) and can be

found from Equations (2.7) and (2.9)
p=1/Q 3.5)

Close perusal of system (3.3) reveals, firstly, that functions F(y,
¢), Gy, £) and H(y, {) can be found independently of the form of the
function Q(y, {) from the first three equations of the system and that
the fourth equation allows us to find Q(y, {); secondly, that if we
assume functions F, G, and H to be independent of 7, the above mentioned
first three differential equations of the system become ordinary ones
and assume exactly the same form as the corresponding ones in the Karman
incompressible fluid problem

2F + H' =0, F* —HF' — F? = — (3, G —HG —2FG =0 (3.6)
with boundary conditions
F(0)=0, F(o)=0, G(0)=1, G(x)=0, H(@O)=0 3.7

Results of numerical solution of this system are given in many
treatises and textbooks (for instance, in [51]).

The last equation of system (3.3) can be solved with the help of a
rule suggested by Millsaps and Pohlhausen [2]. This is not a rule which
is universally applicable, but it can be used for our case of constamt
disc temperature, and also for several varieties of temperature boundary
conditions. Following Millsaps and Pohlhausen we represent fumction Q
by three terms

QD =(Qup—1)QA® + 725 +1 (3-8)

After this the given equation resolves itself into two ordinary
differential equations with corresponding boundary conditions

Q" —oHQy' =0, Qi (0)=1, Qi(o0) =0 3.9)
S* —GHS' + oH'S = — o (F3+G%), S(0)=0, S(c0)=0 (3.10)
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Solutions of both equations are known from the cited references [2].
We have thus arrived at an exact solution for the boundary layer equa-
tion of a rotating disc with boundary conditions (2.10) for n = 1 and
for a finite value of Prandtl number o.

4. Some numerical results. We can make use of the solution we
have built up to afford a concrete evaluation of the effect of friction
and heat transfer on the flow in the boundary layer of the disc. let us
do this for gas with Prandtl number o = 0.72.

The frictional shear stress on the disc surface in dimensional form

du
T,p == (p. .a_.:)w = Poo ¥ Veo ©°rG’ (0) {4.1)

is

The coefficient of frictional torque on one side of a disc of radius
ro is .
2 ' G’ (0) 0.616
Coy=——2_ _(onrte dr=— = (4.2
M PRI OS T 20 0T VR (r0) VR, (ro) )

In a similar manner the heat flux due to conductivity, in the direc-
tion of the disc, per unit time and unit disc surface, can be expressed
thus:

oT — . m’r’ )
6= (V) = rae — 1)) S0 O + iy S0 | 6

We then have a dimensionless coefficient of heat transfer for one
side of a disc

Te

Cp=— To 2 dr =
E ”rO’}‘mITw—TQ I‘S Trq,ar
o 2. 3 T
= sign (T, — P )r, l/% [Ql’ ) + 22 ';’, T _°°T §7(0) ] =

P ™ w [ -]

o T
—=sign(T, —T ]/_“.’_ (0.329—-0.1 alrgd e ) 44
e v oo) o Yoo % CpToo Tw'— Tco 9

Formulas (4.1) and (4.2) representing the effect of friction are
analogous in structure to the corresponding formulas for the case of in-
compressible fluid; whilst, with regard to the influence of heat trans-
fer, determined by formulas (4.3) and (4.4), it is expressed here in a
slightly different way than with an incompressible fluid. The first
difference consists in that the normal Prandtl number o serves as the
parameter on which functions Q, and S depend, and not the modified one as
in Millsap’s and Pohlhausen’s problem. The second difference is the ab-

sence in (4.3) and (4.4) of terms containing derivatives of function Q
introduced by these authors.
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