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In the dynamics of riacoua incompraaalble fluids one Is familiar rlth the 

Karun problem of an Infinite disc rotating at constant angular velocity 
and generating lamlnar motion in the fluid medium rhich is immediately 
adjacent to It. The solution to this problem is one of the examples of 
exact solutions to the Narier-Stokes equation [ 1 I. The heat tranafer 
problem of the fluid under constant temperature conditions of the dlac 
surface was solved (also exactly) by Nillaapa and Pohlhauaen [2 I. 

In this article re show how. by solving the appropriate gaadgnamlc 

problem, with certain conditions and aimpllffcatlona, ue can find a aolu- 
tlon of both these problems. 

1. Formmlation of the problem We imagine m infinite plaue 
disc rotating uniformly about an axis perpendicular to its plane in a 
space filled with viscous gas. Let the rotational axis be z, aud the disc 
plane coincide with that of 2 = 0. Using cylindrical coordinates (f,e,z ) 
ue cau write down the basic equaticus uhich define motion aud heat trans- 
fer in a viscous flow of gas (see, for instance, [3 1 1. Ub will assuu2 
that the following conditions apply: the gas is a perfect one; the flow 
is steady; the flow parameters are independent of the angular coordinate 
8; there are no body forces; there is no mass heat flux fmm outside; the 
so-called ‘second viscosity eoefficienv differs frcm the basic cne only 
in respect of a constant multiplier, pt = up, Ia 1 = 0 ( 1). lhe boundary 
conditions for temperature and velocity rector coqonents in the disc 
problem will be as follows: 

T (r. 0, 0) = T,, sr (r, 8, 0) = 0. u(j (r, 0, 0) = r(o, 

T (r. 0. -I= T,,,. ur (r, 8. -) = 0. u. (r, 0, -1 = 0. 
uz (r, 8, 0) =o (i.1) 

2. Transformation to dimensionless variables and simplifi- 
cation of the equation. Ue introduce two additional assuqtions, 
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nmaely, we assume the Praudtl number u = P c, /x to be constaut and we 
also assume the followiug law relating vi&kty with teeperature: 

Furthermore, R select 
quantities uhoee order of 
the variables theamelves; 
analogy with the solution 

PII& = U' I T,P 

the scales of our required variables to be 
mqpitude corresponds to the maxinamn values of 
the scale for axial velocity is chosen by 
for the inccmpressible fluid. Independent vari- 

ables are also rendered non-dimensional while the scale in the axial 
direction is of the order or thickness of the hydrodynmic viscous layer 
in an incompressible fluid. As regards the radial length scale the choice 
is based on the condition of maintaining a minimum rum&r of dimension- 
less parcueeters in the equations. 

'Ihe dimensionless variables are introduced using these formulas 

q - ,=J&, ur =mrF, uc=mrG, 
r=- r, u,=GN (2.1) 

(I) m 

P = &,,Q". T=TmQ. P=Pad)* P = PaJ$Gop 

Here F, ‘G, N. Q, D, P, are, in general, functions of r and z. %r 
equations in dkionless fom will bs as follows (bars above r and z 
have been dropped): 

Equation of continuity 

1 a(r’W +WW =. 
I_ - 

r ar a8 (2.2) 

Equations of motion in caponents in three directions 

D +$+Na;-GG’] = 

=-r-l aP 1 ~9 (r’F) 8N 
z +&r-1;{Qn[3~-T-a7--T]}’ 

a 
+al 

g + + r-1 g)] + + Qn,.-Y [F -F] (2.3) 

fir 2 Q*+r+_G] (2.4) 

aN+,~)=_~+~~{~~[2~--r-'~~]}+ 

(2.5) 

J?nergy equation 
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by 

bation of state 

&d+DQ (2.7) 

In Equations (2.3)-(2.6) there is a dimensionless parameter K, defined 
the equation 

x=cPToDv~-fw~ P.8) 

This quantity is the basic parameter of similarity for the given 
problem and can be regarded as a canbination based on the circumferential 
velocity of the disc, t~~~n~r ~d~~ol~n~r 

A very wide class of flows exists which corresponds to the condition 
XI>> 1. 

Equations obtained from Equations (2.2)-(2.7) in the limiting case 
nvithK+m., will be called boundary layer equations on a rotating disc. 

In particular, from Equation t2.5) and from the condition of constant 
pressure at infinity, it follows that over the whole flow 

P = con& = + @.gt 

'Ihe boundary conditions (1.1) in 

Q fr, O)= Qw. F (r, O)=O, 

C?(r,bc))=k F(r,ac)=O, 

3. Gmstmction of an exact 

dimensionless form are a~ follows: 

G(r, O)=i, 

G{r,oa)=O, 
N (r* 0) = 0 (2.10) 

solution for the boundary layer. 
To construct a solution to the system of Equations (2.2)-(2.7) for K+ 00 
ue will carry out a transformation similar to Ibrodnitsyn's for a tuo- 
dimensional boundary layer in a gas [4 3. In fact, instead of r and z we 
introduce new independent variables 

? = r, (3.1) 

We also introduce a new unknown quantity H, to replace the function N 

H=iVD+& (3.21 
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while the index n in the viscosity teuperature relation will be assmed 
to be unity; EZquatians (2.2)-(2.4) and (2.6) are brought to the form 

(3.3) 

Eouudary conditions (2.10) are nou replaced by the follmiq condi- 
tions: 

Q (rl. O)= Q,,,) F(rl. O)=O. G(% O)=C 

Q (?,=)=I, F(rl.w)=O. G(% w)=O, a(%O)=O (3.4) 

Function D does not enter the system of equations (3.3) aud csu be 
found frm Equations (2.7) and (2.9) 

0=1/Q (3.5) 

Close perusal of system (3.3) reveals, firstly, that fmctioms P(u, 

C), G6/, C) andH(q, C) canbe found indepemktly of the formofthe 
fmctiouQ~, 5) f ram the first three equations of the system and that 
the fourth equation allows us to find &, 0; secondly, that if we 
assue fuuctionsF, G, audato be independemtofq, the abovembntioned 
first three differential equations of the system becom ordinary ones 
aud assume exactly the muaa form as the corresponding ones iu the Kaman 
incaapressible fluid problem 

W+H'=O, F"--HP'-FP'=-GG", G’-HG’-22FG=G (3.6) 

uit&boundaryconditions 

P(0) = 0, F(m)=O, G(O)=& G(w)=O, H(O)=0 (3.7) 

Results of numerical solution of this system are given in many 
treatises and textbooks (for instance, in [5 1 ). 

‘Be last equation of system (3.3) can be solved with the help of a 
rule suggested by Millsaps and Pohlhausen [2 1. 'Ihis is not a rule uhich 
is universally applicable, but it can be used for our case of constmt 
disc temperature, aad also for several varieties of teqerature bouudary 
couditions. Follaring Millsaps and Pohlhauseu we represent fuuctiou Q 
by three term 

Oh. t)=(Q,-- 1) QI (t) + v’s (‘4 + i (3.8) 

After this the given equation resolves itself'into tuo ordinary 
differential equations with corresponding bomdary conditions 

Q1” - oHQ1’ = 0, QI(O) = 1. Ql(=)=O (3.9) 

se- OHS’ + oH’S = - Q (P” + G’S). s (0) = 0, S(o0) -0 (3.10) 
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Solutions of both equations are hnowa from the cited references [ 2 I. 
We have thus arrived at an exact solution for the boundary layer equa- 
tion of a rotating disc with bouudary conditions (2.10) for n = 1 and 
for a finite value of Prandtl number u. 

4. Some numerical results. We can make use of the solution we 
have built up to afford a concrete evaluation of the effect of friction 
and heat transfer on the flow in the boundary layer of the disc. Let us 
do this for gas with Prandtl nmber u = 0.72. 

‘Ihe frictional shear stress on the disc surface 
is 

= p,erC’ (0) ~ 

in dimensional form 

lhe coefficient of frictional torque on one side of a disc 
r. is 

CT,=--- 2 
‘* 

5 
2nAz0dr = - G’ (0) 0.616 

pe~rOad3rr$ 
0 

VZKl =VR,h) 

i4.1) 

of radius 

(4.2) 

In a similar manner the heat flux due to conductivity, in the direc- 
tion of the disc, per mit time and unit disc surface, can be expressed 
thus: 

!?* = h,(T, - T,) QI'(~) + qTt:T,) s'(O) ] (4.3) 

Me then have a dimensionless coefficient of heat transfer for one 
side of a disc 

re 
C,=- r0 

W$,, IT,-TT, I s 2nrq,dr = 

0 

= sign (TI, - !P’)r, Q1’ (0) + @“o’ Tca 
2C,T, To-T, ” (O) = 1 

= sign (Tw - T,,,) r. 0.329 - 0.106 --%!_ Tw 
CpTo, T, - T, 

(4.4) 

Fonaulas (4.1) aud (4.2) representing the effect of friction are 
analogous in structure to the corresponding formulas for the case of in- 
compressible fluid; whilst, with regard to the influence of heat traus- 
fer, determined by formulas (4.3) and (4.41, it is expressed here in a 
slightly different way than with au incorqwessible fluid. ‘Ihe first 
difference consists in that the normal Prandtl nunber o serves as the 
parameter on which functions Q1 and S depend, and not the modified one as 
in Millsap’s and Pohlhausen’s problem. ‘Ihe second difference is the ab- 
sence in (4.3) and (4.4) of tervss containing derivatives of function Q 
introduced by these authors. 
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